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On the existence and uniqueness of solution to
Volterra equation on a time scale

Bart lomiej Kluczyński

Abstract

Using a global inversion theorem we investigate properties of the
following operator

V (x)(·) := x∆(·) +

∫ ·
0

ν(·, τ, x(τ))∆τ,

x(0) = 0,

in a time scale setting. Under some assumptions on the nonlinear term v
we then show that there exists exactly one solution xy ∈W 1,p

∆,0

(
[0, 1]T ,R

N
)

to the associated integral equationx∆(t) +

∫ t

0

ν(t, τ, x(τ))∆τ = y(t) for ∆-a.e. t ∈ [0, 1]T,

x(0) = 0,

which is considered on a suitable Sobolev space.

1 Introduction

In this paper using a global invertibility theorem from [18, Theorem 4.G], we
consider the following integral operator

V (x)(t) := x∆(t) +

∫ t

0

ν(t, τ, x(τ))∆τ, (1)

Key Words: Time scale, Diffeomorphism, Volterra, Operator, Proper operator, Sobolev’s
space.

2010 Mathematics Subject Classification: 57R50, 26E70, 45D05, 34A12, 46E39.
Received: 18.12.2018
Accepted: 25.02.2019

177



On the existence and uniqueness of solution to Volterra equation
on a time scale 178

x(0) = 0,

investigated in the Sobolev space based on a bounded time scale T, such that
0 ∈ T. We obtain, under assumptions given below, that V defines a global
diffeomorphism between W 1,p

∆,0

(
[0, 1]T ,RN

)
and Lp

(
[0, 1]T,RN

)
for some fixed

p ≥ 2. Spaces W 1,p
∆,0

(
[0, 1]T ,RN

)
and Lp

(
[0, 1]T,RN

)
are counterparts of

Sobolev and Lebesgue spaces in the continuous setting and ∆ denotes the ∆-
derivative while the intergration is with respect to a suitable measure on T
which originates from [16].

As a result of our investigations we will show that for every
y ∈ Lp

(
[0, 1]T,RN

)
there exists exactly one solution xy ∈ W 1,p

∆,0

(
[0, 1]T ,RN

)
to a problemx∆(t) +

∫ t

0

ν(t, τ, x(τ))∆τ = y(t) for ∆-a.e. t ∈ [0, 1]T,

x(0) = 0.

(2)

The background ideas of solving this problem were inspired by global dif-
feomorphism theorem from [13] and [8] however in this submission a method
from the sources mentioned is modified so that to make it somewhat simpler
while retaining the same assertion with same results. Thus it is apparent that
the present note is also new as far as equations in the classical setting are
concerned. This simplification relies in that we do not use the global inversion
tool from [13], so that we do not need to check that the Palais-Smale condi-
tion is satisfied. Instead we check that the linear part is proper, the nonlinear
compact and the operator is norm-coercive as required by [18, p. 175].

Since we consider integral equations in the time scale setting with tech-
niques which are modification of the approaches known in the classical case,
we require some introductory notions from the time scale theory which was
introduced by Stefan Hilger in his PhD thesis [12]. The name of this sub-
ject and introduction to time scales theory is given in [4]. Many methods of
mathematical analysis were reformulated in the time scale setting as seen in
[5].

There have been already some literature on the topic of integral equations
on time scales. For example in [6] techniques from the continuous case, like
Gronwall inequality, continuity and estimate of solutions. Similarly, in [15]
we can qualitative properties of solutions for partial integral equations. These
include a priori estimates and some convergence type results given with the
assumption that a given problem has a solution. Related investigations for
Fredholm typ integro-differential equation are contained in [14]. Book [9] is
devoted to a classical study of integral equations on a time scale which mimics
the classical results in a continuous setting.
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Moreover, there are a few related papers concerning the Volterra type equa-
tions. In [3] a special type of discrete version of (1) is considered for which
stability results and the existence of bounded solutions are investigated. In
[10] the global inversion of non-smooth mappings is considered with possi-
ble applications for some other sets of assumptions for equation (1). Some
stochastic type equations are to be found in [11].

2 The assumption and example

Let P = [0, 1]T × RN . We assume that function ν : ([0, 1]T)
2 × RN → RN

satisfies

(B1) the function ν (·, τ, ·) is continuous on P for ∆-a.e. τ ∈ [0, 1]T,

(B2) the function νx (·, τ, ·) is continuous on P for ∆-a.e. τ ∈ [0, 1]T,

(B3) the function ν (t, ·, x) is measurable on [0, 1]T for all (t, x) ∈ P and there

exist a non-negative functions c1, d1 ∈ Lp∆
(

([0, 1]T)
2
,RN+

)
such that

|ν (t, τ, x)| ≤ c1 (t, τ) |x|+ d1 (t, τ) ,

for all t ∈ [0, 1]T, ∆-a.e. for τ ∈ [0, 1]T, and for all x ∈ RN and function
c1 satisfies inequality∫ t

0

cq1(t, τ)∆τ ≤ H1 ∆-a.e. on [0, 1]T,

where H1 is some fixed constant,

(B4) the function νx (t, ·, x) is measurable on [0, 1]T for all (t, x) ∈ P and there

exist a non-negative function c2 ∈ Lp∆
(

([0, 1]T)
2
,RN+

)
such that

|νx (t, τ, x)| ≤ c2 (t, τ) |x| ,

for all t ∈ [0, 1]T, ∆-a.e. for τ ∈ [0, 1]T, and for all x ∈ RN and function
c2 satisfying inequality∫ t

0

cq2(t, τ)∆τ ≤ H2 ∆-a.e. on [0, 1]T,

where H2 is some fixed constant.
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Here is the example of a nonlinear term satisfying our assumptions.

Let p = 4, and so q = 4
3 . We put T :=

[
0, 1

2

]
∪
{

1− 1
n+2 : n ∈ N

}
∪ {1}.

Let ν : [0, 1]
2
T × R→ R be given by

ν (t, τ, x) := (t+ τ)
3
2 τ3 ln

(
1 + x2

)
+ t

5
4 (t− τ)

2
,

and of course

νx (t, τ, x) = (t+ τ)
3
2 τ3 2x

1 + x2
.

We see that
ν (t, τ, x) ≤ (t+ τ)

3
2 τ3|x|+ t

5
4 (t− τ)

2
,

νx (t, τ, x) ≤ 2 (t+ τ)
3
2 τ3|x|.

Let us put

c1 (t, τ) := (t+ τ)
3
2 τ3,

d1(t, τ) := t
5
4 (t− τ)

2
,

c2 (t, τ) := 2 (t+ τ)
3
2 τ3.

The above functions as polynomials are integrable with the 4-th power. Con-
sequently we have

‖c1‖4L4
∆

=

∫ 1

0

∫ 1

0

|t+ τ |6 |τ |12
∆τ∆t ≤

∫ 1

0

∫ 1

0

|t+ τ |6 |τ |12
dτdt ≤ 2,

‖d1‖4L4
∆

=

∫ 1

0

∫ 1

0

|t|5 |t− τ |8 ∆τ∆t ≤
∫ 1

0

∫ 1

0

|t|5 ||t|+ |τ ||8 dτdt ≤ 6,

‖c2‖4L4
∆

=

∫ 1

0

∫ 1

0

16 |t+ τ |6 |τ |12
∆τ∆t ≤

∫ 1

0

∫ 1

0

16 |t+ τ |6 |τ |12
dτdt ≤ 32.

Since t ≤ 1 we see that∫ 1

0

c
4
3
1 (t, τ)∆τ =

∫ 1

0

(t+ τ)
2
τ4∆τ ≤

∫ 1

0

(t+ τ)
2
τ4dτ =

21t2 + 35t+ 15

105
< 1,∫ 1

0

c
4
3
2 (t, τ)∆τ =

∫ 1

0

2
3
√

2 (t+ τ)
2
τ4∆τ ≤

∫ 1

0

2
3
√

2 (t+ τ)
2
τ4dτ ≤ 2

3
√

2.

Therefore, the mapping V given by

V (x)(t) = x∆(t) +

∫ t

0

(t+ τ)
3
2 τ3 ln

(
1 + x2(τ)

)
+ t

5
4 (t− τ)

2
∆τ

is a diffeomorphism between W 1,p
∆,0

(
[0, 1]T ,RN

)
, and Lp∆

(
[0, 1]T ,RN

)
.
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3 Background results

To simplify a notation, let a := inf T, and b := supT and since T is bounded,
both belong to it.

Define forward jump operator σ : T→ T by

σ(t) :=

{
inf{s ∈ T : s > t} for t < b,

b for t = b,

and backward jump operator ρ : T→ T by

ρ(t) :=

{
sup{s ∈ T : s < t} for t > a,

a for t = a.

A point t ∈ T is said to be left-dense, left-scattered, right-dense, right-scattered
if ρ(t) = t, ρ(t) < t, σ(t) = t, σ(t) > t, respectively. For f : T→ R, we define
fσ : T→ R and the graininess function µ : T→ [0,∞) by

fσ(t) := f(σ(t)).

Define the graininess function µ : T→ [0,∞) by

µ(t) := σ(t)− t.

Set Tκ is given by

Tκ =

{
T if b is left-dense,
T \ {b} if b is left-scattered.

Let f : T→ R and let t ∈ Tκ. We define f∆(t) to be the number (provided
it exists) with the property the given any ε > 0, there is a neighborhood U of
t (i.e.,U = (t− δ, t+ δ) ∩ T for some δ > 0) such that

|f(σ(t))− f(s)− f∆(t)(σ(t)− s)| < ε|σ(t)− s| for all s ∈ U.

We call f∆(t) the delta (or Hilger) derivative of f at t. We say that f is the
delta (or Hilger) differentiable on Tκ provided f∆(t) exist for all t ∈ Tκ. Then
f : Tκ → R is called the (delta) derivative of f on Tκ.

f : [a, b]T → RN is called rd-continuous provided it is continuous at every
right-dense point in [a, b]T and its left-sided limit exists and it is finite at every
left-dense point in [a, b]T.
Space of rd-continuous functions we denote by Crd

(
[a, b]T ,RN

)
.
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We say that p : T→ R is regressive if and only if

1 + p(t)µ(t) 6= 0 for all t ∈ Tκ.

For p is regressive and rd-continuous, we define the exponential function
by

ep(t, a) :=

∫ t

a

ξµ(τ) (p(τ)) ∆τ for s, t ∈ T, (3)

where

ξµ(τ) (p(τ)) :=

{
p(τ) for t ∈ T, µ(τ) = 0,
Log(1+µ(τ)p(τ))

µ(τ) for t ∈ T, µ(τ) > 0.

Remark 3.1 (Theorem 2.48. [4]). Let function p : T → R will be regressive,
rd-continuous and t0 ∈ T. If p satisfies the following

1 + p(t)µ(t) > 0 for all t ∈ T,

then ep(t, t0) > 0 for all t ∈ T.

The ides of integration and measure on T are taken from [16]. The defini-
tions and theorems given below come from [2] and [16]. By [a, b]T we denote
intersection of a interval [a, b] with a time scale T.

Let us define a function E : [a, b]→ R by

E(t) := sup{s ∈ T : s ≤ t}. (4)

Suppose that f : Tκ → RN . Then f ◦ E : [a, b) → R is an extension of f to
[a, b). Moreover f is constant on ”gaps” in T, with value equal to the value
of f at the left-hand end of ”the gap”. We then say that f is measurable,
respectively integrable, if f ◦ E is measurable, respectively integrable, on the
real interval [a, b] in the usual Lebesgue sense. We denote the set of such
integrable functions on T by L1

∆(T,RN ). For any f ∈ L1
∆(T,RN ) we define

the integral of f by ∫ t

s

f∆ =

∫ t

s

(f ◦ E) (x)dx,

where on the right-hand side the integration is the usual Lebesgue one.
For any A ⊂ T, let χA denote the characteristic function of A. We say

that A is measurable if χA is measurable in the above sense. If A is measurable,
we define the integral of f ∈ L1

∆(T,RN ) over A to be∫
A

f∆ :=

∫ b

a

fχA∆,
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and we define the measure µT(A) of A to be

µT(A) :=

∫
A

1∆.

Then
µT ([s, t)T) = t− s for s, t ∈ T.

The only exception to the standard notation is {b}, for which we have

µT({b}) = 0,

instead of taking the value of infinity. In our opinion it better reflects that T
unifies both continues and discrete problems.

We define, the space Lp∆(T,RN ) with a norm

‖f‖Lp
∆

:=

(∫ b

a

|f(x)|p∆x

) 1
p

.

We say that a measurable function f is essentially bounded on [a, b]T pro-
vided there exist a constant K for which |f(x)| ≤ K for ∆-a.e. x ∈ [a, b]T.
L∞∆

(
[a, b]T ,RN

)
is equipped with a usual norm

‖f‖L∞∆ := ess sup
x∈[a,b]T

|f(x)|.

Suppose that x, y ∈ RN . Then

Cp |x− y|p ≤
(
|x|p−2x− |y|p−2y, x− y

)
, (5)

where Cp := 2
p(2p−1−1) and symbol (·, ·) denotes the inner product in RN .

Lemma 3.2 (Clarkson’s inequalities [1]). Let q be conjugate exponent for p,
i.e. 1

p + 1
q = 1 and let x, y ∈ RN . Then∣∣∣∣x+ y

2

∣∣∣∣p +

∣∣∣∣x− y2

∣∣∣∣p ≤ 1

2
(|x|p + |y|p)

By ([17] p. 33) Hölder’s inequality and Minkowski inequality are also valid.

Remark 3.3. Let 1 ≤ r < q ≤ ∞. If x ∈ Lq∆
(
[a, b]T ,RN

)
, then x ∈

Lr∆
(
[a, b]T ,RN

)
and from the Hölder inequality we have

‖x‖Lr
∆
≤ µT ([a, b]T)

1
r−

1
q ‖x‖Lq

∆
.
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Therefore
Lq∆
(
[a, b]T ,R

N
)
↪→ Lr∆

(
[a, b]T ,R

N
)
, i.e.

the embedding is continuous. In addition, we have an inequality

‖x‖Lr
∆

=

(∫ b

a

|x(t)|r∆t

) 1
r

≤

(∫ b

a

‖x‖rL∞∆ ∆t

) 1
r

≤ µT ([a, b]T)
1
r ‖x‖L∞∆ .

Theorem 3.4. [16] Suppose that fn ∈ Lp∆([a, b]T ,RN ) for n ∈ N.

a) If ‖fn − f‖Lp
∆
→ 0, for some f ∈ Lp∆([a, b]T ,RN ) and t0 ∈ [a, b]T is right-

scattered, then fn(t0)→ f(t0),

b) If ‖fn−f‖Lp
∆
→ 0, for some f ∈ Lp∆([a, b]T ,RN ), then there exist increasing

sequence (nk)k∈N such that fnk
→ f ∆-a.e. on [a, b]T,

c) If (fn)n∈N is a Cauchy sequence in Lp∆([a, b]T ,RN ), then there exists a
unique f ∈ Lp∆([a, b]T ,RN ) such that ‖fn − f‖Lp

∆
→ 0.

4 Sobolev spaces on time scale

Let u : [a, b]T → RN . We say that u ∈ W 1,p
∆ ([a, b]T,RN ) if and only if

u ∈ Lp∆([a, b]T,RN ) and if there exists a function g : ([a, b]T)
κ → RN such that

g ∈ Lp∆([a, b]T,RN ) and∫ b

a

(u(t), φ∆(t))∆t = −
∫ b

a

(g(t), φσ(t))∆t for all φ ∈ C1
rd,0([a, b]T,RN ), (6)

with

C1
rd,0([a, b]T,RN ) :=

{
f : [a, b]T → RN : f ∈ C1

rd([a, b]T,RN ), f(a) = 0 = f(b)
}

and C1
rd([a, b]T,RN ) is the set of all continuous functions on [a, b]T such that

they are ∆-differentiable on [a, b]κT and their ∆-derivatives are rd-continuous
on [a, b]κT.

Lemma 4.1. [2] Let f ∈ L1
∆

(
[a, b]T ,RN

)
. Then, a necessary and sufficient

condition for the following equality to hold∫ b

a

(f(t), h∆(t))∆t = 0 for every h ∈ C1
rd,0

(
[a, b]T ,R

N
)
,

is the existence of a constant C ∈ RN , such that f ≡ C ∆-a.e. on [a, b]T.
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We will comment below on the relationship between spaceW 1,p
∆

(
[a, b]T ,RN

)
and absolutely continuous functions.

Lemma 4.2. [2] Let f, g : [a, b]T → RN absolutely continuous on [a, b]T. Then
their scalar product (f, g) is absolutely continuous on [a, b]T and the following
equality holds∫ b

a

(
f∆g + fσg∆

)
(t)∆t = f(b)g(b)− f(a)g(a) =

∫ b

a

(
fg∆ + f∆gσ

)
(t)∆t.

(7)

Lemma 4.3. [2] f : [a, b]T → RN is absolutely continuous on [a, b]T if and
only if f is delta differentiable ∆-a.e. on ([a, b]T)

κ
and

f(t) := f(a) +

∫ t

a

f∆(s)∆s for all t ∈ T. (8)

Theorem 4.4. Suppose that u ∈ W 1,p
∆

(
[a, b]T ,RN

)
and that (6) holds for

some g ∈ Lp∆
(
[a, b]T ,RN

)
. Then, there exists a unique absolutely continuous

function x, such that

u = x ∆-a.e. on [a, b]T ,
g = x∆ ∆-a.e. on [a, b]T .

(9)

Proof. Let us define a function v : [a, b]T → RN as

v(t) =

∫ t

a

g(s)∆s. (10)

Let h ∈ C1
rd,0

(
[a, b]T ,RN

)
. Since v is absolutely continuous and since (7)

holds, we see that∫ b

a

(
v(t), h∆(t)

)
∆t = −

∫ b

a

(
v∆(t), hσ(t)

)
∆t,

We have v∆ = g ∆-a.e. on [a, b]T. Since g is the generalized derivative of the
function u, we have∫ b

a

(
u(t), h∆(t)

)
∆t = −

∫ b

a

(g(t), hσ(t)) ∆t,

for every h ∈ C1
rd,0

(
[a, b]T ,RN

)
. Therefore∫ b

a

(
v(t)− u(t), h∆(t)

)
∆t = −

∫ b

a

(
v∆(t)− g(t), hσ(t)

)
∆t = 0.
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From Lemma 4.1 there exists a constant C0 ∈ RN such that v − u ≡ C0 ∆-
almost everywhere on [a, b]T. As a consequence we conclude that the function
x : [a, b]T → RN defined as x(t) = v(t) − C0 for all t ∈ [a, b]T is the unique
absolutely continuous function satisfying (9).

In this way, we obtain a vector space W 1,p
∆

(
[0, 1]T ,RN

)
as a space of

absolutely continuous functions with norm defined by the formula

‖x‖W 1,p
∆

:=

(∫ 1

0

|x(t)|p∆t
) 1

p

+

(∫ 1

0

|x∆(t)|p∆t
) 1

p

.

Let us define a subspace of space W 1,p
∆

(
[0, 1]T ,RN

)
, denoted by

W 1,p
∆,0

(
[0, 1]T ,R

N
)

:=
{
f ∈W 1,p

∆

(
[0, 1]T ,R

N
)

: f(0) = 0
}
,

with a norm ‖ · ‖W 1,p
∆,0

given by

‖x‖W 1,p
∆,0

:=

(∫ 1

0

|x∆(t)|p∆t
) 1

p

.

Theorem 4.5 (Poincáre Inequality). For any x ∈W 1,p
∆,0

(
[0, 1]T ,RN

)
the fol-

lowing inequality holds
‖x‖W 1,p

∆
≤ 2‖x‖W 1,p

∆,0
.

Proof. Let x ∈W 1,p
∆,0

(
[0, 1]T ,RN

)
. Since x(0) = 0

|x(t)| = |x(t)− x(0)| =
∣∣∣∣∫ t

0

x∆(s)∆s

∣∣∣∣ ≤ ‖x∆‖L1
∆
,

for every t ∈ [0, 1]T, we see that ‖x‖L∞∆ ≤ ‖x
∆‖L1

∆
, and applying Remark 3.3

we obtain ‖x‖Lp
∆
≤ ‖x∆‖Lp

∆
.

Remark 4.6. Observe that by Theorem 4.5 norms ‖ · ‖W 1,p
∆,0

, ‖ · ‖W 1,p
∆

are

equivalent on W 1,p
∆,0

(
[0, 1]T ,RN

)
. Indeed, for any x

‖x‖W 1,p
∆,0
≤ ‖x‖W 1,p

∆
= ‖x∆‖Lp

∆
+ ‖x‖Lp

∆
≤ ‖x∆‖Lp

∆
+ ‖x∆‖Lp

∆
= 2‖x‖W 1,p

∆,0
.

Theorem 4.7. Space (W 1,p
∆,0

(
[0, 1]T ,RN

)
, ‖ · ‖) is reflexive.
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Proof. Let (xn)n∈N be Cauchy sequence in W 1,p
∆,0

(
[0, 1]T ,RN

)
. Therefore,

there exist a sequence (x∆g
n )n∈N of generalized derivatives such that∫ 1

0

(xn(t), φ∆(t))∆t = −
∫ 1

0

(x∆g
n (t), φσ(t))∆t for any φ ∈ C1

rd,0

(
[a, b]T ,R

N
)
.

This means that (xn)n∈N and (x∆g
n )n∈N are Cauchy sequences in Lp∆

(
[0, 1]T ,RN

)
.

From Theorem 3.4 we know there exist x, x∆ ∈ Lp∆
(
[0, 1]T ,RN

)
such that

‖xn − x‖Lp
∆
→ 0,

‖x∆g
n − x∆g‖Lp

∆
→ 0.

Moreover, applying Hölder inequality we obtain∫ 1

0

(xn(t)− x(t))φ∆(t)∆t ≤ ‖xn − x‖Lp
∆
‖φ∆‖Lq

∆
→ 0,∫ 1

0

(
x∆g
n (t)− x∆g(t)

)
φσ(t)∆t ≤ ‖x∆g

n (t)− x∆g(t)‖Lp
∆
‖φσ‖Lq

∆
→ 0.

Consequently∫ 1

0

x(t)φ∆(t)∆t = lim
n→∞

∫ 1

0

xn(t)φ∆(t)∆t

= lim
n→∞

∫ 1

0

x∆g
n (t))φσ(t)∆t =

∫ 1

0

x∆g(t)φσ(t)∆t.

(11)

It remains to show that x(0) = 0. This follows since xn converges uniformly
on [0, 1]T. Hence W 1,p

∆,0

(
[0, 1]T ,RN

)
is a complete normed vector space, as a

closed subspace of such a space.
Now we investigate the uniform convexity. Let us assume that x, y ∈

W 1,p
∆,0

(
[0, 1]T ,RN

)
are such that ‖x‖W 1,p

∆,0
= 1, ‖y‖W 1,p

∆,0
= 1, ‖x− y‖W 1,p

∆,0
≥ 1.

From Lemma 3.2 we have∥∥∥x+ y

2

∥∥∥p
W

1,p
∆,0

+
∥∥∥x− y

2

∥∥∥p
W

1,p
∆,0

=

∫ 1

0

∣∣∣∣x∆(t) + y∆(t)

2

∣∣∣∣p ∆t+

∫ 1

0

∣∣∣∣x∆(t)− y∆(t)

2

∣∣∣∣p ∆t

≤
∫ 1

0

1

2

(∣∣∣x∆(t)
∣∣∣p +

∣∣∣y∆(t)
∣∣∣p)∆t = 1.

Therefore ∥∥∥∥x+ y

2

∥∥∥∥
W 1,p

∆,0

≤
(

1−
(ε

2

)p) 1
p

≤ 1− 1

p

(ε
2

)p
.

From Milman-Pettis Theorem we obtain the reflexivity of W 1,p
∆,0

(
[0, 1]T ,RN

)
.



On the existence and uniqueness of solution to Volterra equation
on a time scale 188

Now we introduce the Bielecki norm. Let β > 0, x ∈ Lp∆
(
[0, 1]T ,RN

)
‖x‖β,Lp

∆
:=

(∫ 1

0

1

eσβ(t, 0)
|x(t)|p∆t

) 1
p

, (12)

where eσβ(t, 0) is a superposition of a jump operator and the exponent on the
time scale defined in (3). Using the monotonicity of the exponent function.
We see(∫ 1

0

|x(t)|p∆t
) 1

p

≥

(∫ 1

0

1

eσβ(t, 0)
|x(t)|p∆t

) 1
p

≥

(∫ 1

0

1

eσβ(1, 0)
|x(t)|p∆t

) 1
p

.

Therefore both norms are equivalent, i.e.

‖x‖Lp
∆
≥ ‖x‖β,Lp

∆
≥ 1

eσβ(1, 0)
‖x‖Lp

∆
.

Remark 4.8. For every x ∈W 1,p
∆,0

(
[0, 1]T ,RN

)
due to integration by parts we

obtain

i) ‖x‖β,Lp
∆
≤
(

1
β

) 1
p ‖x‖β,W 1,p

∆,0
,

ii)
∥∥∫ ·

0
|x(τ)|∆τ

∥∥
β,Lp

∆

≤
(

1
β

) 2
p ‖x‖β,W 1,p

∆,0
.

5 Main results

Let f : E → B be mapping between Banach spaces E and B. f is called
proper iff the preimage f−1(C) of every compact set C in B is also compact.

Theorem 5.1 (Theorem 4.G [18]). Let f : E → B be a local diffeomorphism,
at every point of E. Then f is a diffeomorphism iff f is proper.

Theorem 5.2 ([18] p. 175). Let f : E → B be a continuous coercive norm
mapping between the two Banach spaces, i.e. ‖V (x)‖ → ∞ as ‖x‖ → ∞.
Then f is proper if there exist functions g, h : E → B such that g is proper, h
is compact and f = g + h.

Theorem 5.3 (Mean Value Theorem 3.2.6 [7]). Assume f : E → B has the
directional derivative at all points of the line segment joining points a, b ∈ E in
the direction of this segment i.e., f ′G (a+ t(b− a)) (a− b) exist for all t ∈ [0, 1].
If the mapping t 7→ f ′G (a+ t(b− a)) (a− b) is continuous on [0, 1], then

f(b)− f(a) =

∫ 1

0

f ′G (a+ t(b− a)) (a− b) dt.
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Remark 5.4. Let [s, t)T be an subset of some a time scale T and let 2 ≤ p <
∞. The functional ξ given by

ξ(u) :=

∫ t

s

|u(τ)|p ∆τ,

is of class C1 (Lp∆ ([s, t)T ,R) ,R) and

(ξ′(u), h) = p

∫ t

s

|u(τ)|p−2
u(τ)h(τ)∆τ.

In all results which follow it is assumed that conditions (B1)-(B4) are
satisfied.

Theorem 5.5. Mapping W 1,p
∆,0

(
[0, 1]T ,RN

)
3 x 7→ x∆ ∈ Lp∆

(
[0, 1]T ,RN

)
is

proper.

Proof. Let V be compact in Lp∆
(
[0, 1]T ,RN

)
andW := {w ∈W 1,p

∆,0

(
[0, 1]T ,RN

)
:

w∆ ∈ V }. Consider any sequence (wn)n∈N in W , and define sequence vn :=
w∆
n , for all n ∈ N. Note that (vn)n∈N has a convergent subsequence (vnk

)k∈N
to v0 ∈ V and consequently (vnk

)k∈N is a Cauchy sequence. By equality

‖wnk
− wnj

‖W 1,p
∆,0

= ‖w∆
nk
− w∆

nj
‖Lp

∆
= ‖vnk

− vnj
‖Lp

∆

(wnk
)k∈N is a Cauchy sequence in W 1,p

∆,0

(
[0, 1]T ,RN

)
, thus (wnk

)k∈N is con-
vergent to some w0. Thus from equality

‖wnk
− w0‖W 1,p

∆,0
= ‖w∆

nk
− w∆

0 ‖Lp
∆

= ‖vnk
− w∆

0 ‖Lp
∆

we get w∆
0 = v0. This shows that W is compact.

Theorem 5.6.
Mapping W 1,p

∆,0

(
[0, 1]T ,RN

)
3 x 7→

∫ t
0
ν(t, τ, x(τ))∆τ ∈ Lp∆

(
[0, 1]T ,RN

)
is

compact.

Proof. Let (xn)n∈N by weakly convergent to some x0 ∈ W 1,p
∆,0

(
[0, 1]T ,RN

)
.

Then (xn)n∈N converges to x0 in Lp∆
(
[0, 1]T ,RN

)
. For functions c1, d1 ∈

Lp∆

(
[0, 1]

2
T ,RN+

)
from condition (B3) we have

|ν(t, τ, xn(τ))− ν(t, τ, x0(τ))∆τ | ≤ 2Mc1 (t, τ) + d (t, τ) ,

and by the Dominated Convergence Theorem we obtain(∫ 1

0

(∫ t

0

ν(t, τ, xn(τ))− ν(t, τ, x0(τ))∆τ

)p
∆t

) 1
p

→ 0.

Therefor we have the compactness of our mapping.
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Lemma 5.7. Mapping V given by (1) is continuously Gâteaux differentiable
and a Gâteaux derivative V ′ (x) : W 1,p

∆,0

(
[0, 1]T ,RN

)
→ Lp

(
[0, 1]T ,RN

)
at any

point x ∈W 1,p
∆,0

(
[0, 1]T ,RN

)
is given by

V ′ (x(t))h(t) := h∆(t) +

∫ t

0

νx (t, τ, x(τ))h(τ)∆τ,

for every h ∈W 1,p
∆,0

(
[0, 1]T ,RN

)
. Moreover, for any fixed x ∈W 1,p

∆,0

(
[0, 1]T ,RN

)
operator V ′(x) is one to one and onto.

Proof. The formula for a derivative follows from (5.3) and the Lebesgue Dom-
inated Convergence Theorem.

Let (xn)n∈N be a sequence from W 1,p
∆,0

(
[0, 1]T ,RN

)
convergent to x. For

every h ∈ W 1,p
∆,0

(
[0, 1]T ,RN

)
, by the Dominated Convergence Theorem we

obtain∥∥V ′(x)h− V ′(xn)h
∥∥
L

p
∆

=

(∫ 1

0

∣∣∣∣∫ t

0

(νx(t, τ, x(τ))− νx(t, τ, xn(τ)))h(τ)∆τ

∣∣∣∣p ∆t

) 1
p

≤ ‖h‖L∞∆

(∫ 1

0

∫ t

0

|νx(t, τ, x(τ))− νx(t, τ, xn(τ))|p ∆τ∆t

) 1
p

→ 0.

Therefore V ′(x) is also continuous.
In order to prove that for any fixed x ∈W 1,p

∆,0

(
[0, 1]T ,RN

)
operator V ′(x)

is one to one and onto we will show that for any fixed ξ ∈ Lp∆
(
[0, 1]T ,RN

)
the following linear integro-differential equation

h∆(t) +

∫ t

0

νx (t, τ, x(τ))h(τ)∆τ = ξ(t) for ∆-a.e. t ∈ [0, 1]T

has a unique solution in W 1,p
∆,0

(
[0, 1]T ,RN

)
. In order to do this let us fix

ξ ∈ Lp∆
(
[0, 1]T ,RN

)
and consider the following linear equation

h∆(t) = u(t) + ξ(t) for ∆-a.e. t ∈ [0, 1]T ,

where u ∈ Lp∆
(
[0, 1]T ,RN

)
is fixed for the time being. Such an equation has

a unique solution as well, which will be denoted hu ∈ W 1,p
∆,0

(
[0, 1]T ,RN

)
and

wich is given by

hu(t) =

∫ t

0

ξ(s)− u(s)∆s for ∆-a.e. t ∈ [0, 1]T .

Now, consider the mapping Γ : Lp∆
(
[0, 1]T ,RN

)
→ Lp∆

(
[0, 1]T ,RN

)
given by

Γ : Lp∆
(
[0, 1]T ,R

N
)
3 u(·) 7→

∫ ·
0

νx (·, τ, x(τ))hu(τ)∆τ ∈ Lp∆
(
[0, 1]T ,R

N
)
,
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and the associated u(·) = (Γu) (·). We will show that Γ is a contraction and
thus it has an unique fixed point. For any u1, u2 ∈ Lp∆

(
[0, 1]T ,RN

)
we have

‖Γu1 − Γu2‖pβ,Lp
∆

=

∫ 1

0

1

eσβ(t, 0)

∣∣∣∣∫ t

0

νx (t, τ, x(τ))

(∫ τ

0

u1(s)− u2(s)∆s

)
∆τ

∣∣∣∣p ∆t

≤
∫ 1

0

1

eσβ(t, 0)

(∫ t

0

|νx (t, τ, x(τ))|q ∆τ

) p
q

×

×
(∫ t

0

∫ τ

0

|u1(s)− u2(s)|p ∆s∆τ

)
∆t

≤ H
p
q

1

β2
‖u1 − u2‖pβ,Lp

∆
,

where H ≥ ‖x‖qL∞∆
∫ 1

0
cq2 (t, τ) ∆τ . Hence

‖Γu1 − Γu2‖β,Lp
∆
≤ H

1
q

β
2
p

‖u1 − u2‖β,Lp
∆
.

For β ≥ H
p
2q the mapping Γ is a contraction so by the Banach Principle it

has fixed point u∗ ∈ Lp∆
(
[0, 1]T ,RN

)
Therefore for every ξ ∈ Lp∆

(
[0, 1]T ,RN

)
there exist u∗ ∈ Lp∆

(
[0, 1]T ,RN

)
which is a solution to u = Γu. Hence, there

is unique h ∈W 1,p
∆,0

(
[0, 1]T ,RN

)
satisfying

h∆(t) = ξ(t)− u∗(t) ∆-a.e. on [0, 1]T ,

which depends solely on the choice of ξ ∈ Lp∆
(
[0, 1]T ,RN

)
.

Lemma 5.8. Operator V : W 1,p
∆,0

(
[0, 1]T ,RN

)
→ Lp

(
[0, 1]T ,RN

)
satisfies the

norm coercivity condition.

Proof. We see that

∥∥∥∥∫ ·
0

ν(·, τ, x(τ))∆τ

∥∥∥∥
β,Lp

∆

≤

(∫ 1

0

1

eσβ(t, 0)

∣∣∣∣∫ t

0

c1 (t, τ) |x(τ)|+ d1 (t, τ) ∆τ

∣∣∣∣p ∆t

) 1
p

≤H
1
q

1

(∫ 1

0

1

eσβ(t, 0)

∫ t

0

|x(τ)|p ∆τ∆t

) 1
p

+ ‖d1‖β,Lp
∆

≤H
1
q

1

(
1

β

) 2
p

‖x‖β,W 1,p
∆,0

+ ‖d1‖β,Lp
∆
.
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As a consequence

‖V (x)‖β,Lp
∆
≥‖x‖β,W 1,p

∆,0
−
∥∥∥∥∫ ·

0

ν(·, τ, x(τ))∆τ

∥∥∥∥
β,Lp

∆

≥

(
1−H

1
q

1

(
1

β

) 2
p

)
‖x‖β,W 1,p

∆,0
− ‖d1‖β,Lp

∆
.

Thus choosing β > max{H
p
2q

1 , H
p
2q }, we se that the assertion holds.

Theorem 5.9. Operator V defined by (2) is a diffeomorphism.

Proof. We show that for any x ∈ W 1,p
∆,0

(
[0, 1]T ,RN

)
there exists Cx > 0 such

that
‖V ′(x)h‖ ≥ Cx ‖h‖

for any h ∈ W 1,p
∆,0

(
[0, 1]T ,RN

)
. Let us choose H and β as in the proof of

Lemma 5.7. Then

‖V ′(x)h‖β,Lp
∆
≥

(
1−H

1
q

(
1

β

) 2
p

)
‖h‖β,W 1,p

∆,0
,

and we can define a positive Cx := 1 − H
1
q

(
1
β

) 2
p

. Additionally, we showed

in the proof of Lemma 5.7 that Fréchet derivative of function V is one to one
and onto. Therefor V is a local diffeomorphism.

Operator V as the sum of the proper operator and the compact opera-
tor is proper. Recalling that V is norm coercive we see that operator V is
diffeomorphism.

Theorem 5.10. Assume that conditions (B1)-(B4) are satisfied. For any
fixed y ∈ Lp∆

(
[0, 1]T ,RN

)
problem (2) has exactly one solution.

Proof. The assertion from Theorem 5.9.
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